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Abstract: Evolution of speculative attack models show certain progress in 

developing idea of the role of expectations in the crisis mechanism. Obstfeld 

(1996) defined expectations as fully exogenous. Morris and Shin (1998) 

endogenised the expectations with respect to noise leaving information 

significance away. Dynamic approach proposed by Angeletos, Hellwig and Pavan 

(2006) operates under more sophisticated assumption about learning process that 

tries to reflect time-variant and complex nature of information in the currency 

market much better. But this model ignores many important details like a Central 

Bank cost function. Genetic algorithm allows to avoid problems connected with 

incorporating information and expectations into agent decision making process to 

an extent. There are some similarities between the evolution in Nature and 

currency market performance. In our paper an assumption about rational agent 

behaviour in the efficient market is criticised and we present our version of the 

dynamic model of a speculative attack, in which we use a genetic algorithm to 

define decision-making process of the currency market agents. The results of our 

simulation seem to be in line with the theory and intuition. An advantage of our 

model is that it reflects reality in quite complex way, i.e. level of noise changes in 

time (decreasing), there are different states of fundamentals (with “more sensitive” 

upper part of the scale), number of inflowing agents can be low or high (due to 

different globalization phases, different capital flow phases, different uncertainty 

levels). 

 

 



Introduction 

Speculative attack models try to catch a complicated relation between 

information and expectations. Informed agents (provided by either private 

signals or common knowledge or both of these) formulate their 

expectations and due to these expectations make strategies either to attack 

or hold. This mechanism from information through expectations to attack 

has always been extremely difficult to cover in any theoretical framework. 

Evolution of speculative attack models show certain progress in developing 

idea of the role of expectations in the crisis mechanism. Obstfeld (1996) 

defined expectations as fully exogenous. Morris and Shin (1998) 

endogenised the expectations with respect to noise leaving information 

significance away. They proposed static model, including information but 

excluding any possibility of so-called common knowledge in the currency 

market. Dynamic approach proposed by Angeletos, Hellwig and Pavan 

(2006) operates under more sophisticated assumption about learning 

process that tries to reflect time-variant and complex nature of information 

in the currency market much better. But this model ignores many important 

details like a Central Bank cost function. 

If we look at the speculative attack as at the optimisation problem, why 

not to use genetic algorithm to present the agent behaviour in the market? 

Genetic algorithm allows to avoid problems connected with incorporating 

information and expectations into agent decision making process to an 

extent. Evolution means that the species that are prepared to the 

environment worse, have smaller chances to survive, and as the time passes 

by, improved species appear. There are some similarities between the 

evolution in Nature and currency market performance. In the currency 

market the speculators make wrong decisions and are eliminated from the 

market by these speculators who generate high pay-offs. Therefore, we can 

assume that learning in the currency market may in fact be characterised 

like species adaptation process to the environment. That is why we believe 

that introducing genetic algorithm may be a right step towards finding some 

optimal solutions for the speculative attack model. 

This paper is organized as follows. In the second section assumption 

about rational agent behaviour in the efficient market is criticised and we 

explain why we use genetic algorithm. In the third section dynamic model 

of a speculative attack is presented. In the fourth section optimal strategies 

for the Central Bank and for speculators are defined. In the fifth section 

genetic algorithm that reflects decision making process is described. In the 

sixth section our results are presented. We also show evolution of a 

learning process. The last section contains conclusions. 

 



1. Critical approach towards rational agent behaviour in the 

efficient market 

Foreign exchange market can not be characterised as a good example of 

strong efficiency paradigm by Fama (1970). Information is not equally 

available to all agents. The market is rather decentralised and trade 

transparency is low (see Lyons (2001)). It is well known, that this 

distinguishes the foreign exchange market from other financial markets. 

Moreover, results of the surveys (Sarno and Taylor (2002)), especially 

these based on the microstructural logic suggest that the static expectation 

hypothesis should be rejected. The results confirm heterogeneity of 

expectations.  

Using behavioural finance perspective we can say that although an agent 

may store and process only a tiny part of the relevant information, the agent 

is not brainless. If we agree to abandon traditional rational expectation 

model that assumes perfect knowledge of the market participants, then it is 

possible to redefine an individual forecasting strategy, which is neither 

fully rational (in a sense of homo oeconomicus) nor fully irrational. It is in 

line with heuristics rules taken from the psychology. So-called trial and 

error strategy represents bounded rationality framework and means ex post 

checking how profitable certain rule is while comparing it with some 

others. If the rule does not prove to be the profitable one, then the agent 

switches to the better one. If the agent’s strategy turns out to be successful, 

then she/he sticks to it. Trial and error strategy is rooted in Nature, it has 

got strongly evolutionary character.  

In the behavioural model of exchange rate by De Grauwe and Grimaldi 

(2006) the mechanism of making forecasts by the agents is well described. 

The authors show that in the foreign exchange market the agents follow 

trial and error strategy, no matter if they are so-called “fundamentalists” or 

“chartists” (no matter if they analyse macroeconomic fundamentals or they 

rely on technical analysis to forecast the exchange rate). Ex post assessment 

of the forecasting strategies may transform “fundamentalist” into “chartist” 

or vice versa. It is worth mentioning that according to Tversky, Kanheman 

(1991) the agents need some time to adopt a new strategy, they are slightly 

conservative, therefore “status quo bias” must be considered in their 

decision making process even though it is true that the agents react to the 

relative profitability of the rules. Trial and error strategy is thus a dynamic 

process that requires further assumptions concerning “memory” of the 

agent. De Grauwe and Grimaldi (2006) use the short-run memory 

hypothesis that implies that the agent refer just to last period‘s squared 

forecast error to make their decision.  



Frydman and Goldberg (2007) formulate some critical remarks towards 

rational expectation and efficient market hypothesis too. They are quite 

close to the behavioural economists’ point of view. The authors pay 

attention to the fact that the individuals in the foreign exchange market 

must cope with imperfect knowledge. They stress importance of the 

revision of the agent forecasting strategies over time at the same time 

mentioning that even “social context” should be considered as important 

determinant of the strategy formulation process. They also describe the 

agents as conservative, defining this as follows: “an individual’s forecast of 

the future exchange rate is not too different from the forecast she would 

have had if she did not revise her forecasting strategy” (Frydman and 

Goldberg, 2007, p. 184).  

It seems that formulating a model that would reflect true agent behavior 

in the foreign exchange market in a proper way is more complicated task 

than the supporters of traditional efficient market hypothesis would like to 

present. Such a model should have an evolutionary, dynamic character, 

show making decision processes based on trial and error strategy which 

are treated as optimisation, however, under imperfect knowledge 

assumption. Genetic algorithm appears to be quite suitable to imitate 

agents’ behavior in the foreign exchange market in the real world if we 

want to meet majority of these criteria. 

 

Methodology of the research 

2. Dynamic Model of Speculative Attack 

Both models by Obstfeld (1986) and by Morris and Shin (1998) have 

some shortcomings and in this paper these models are extended (especially 

Morris and Shin’s one) and made more applicable. Neither “multiple 

equilibria” approach nor “uniqueness” take into account time as important 

factor, they are both static. Therefore, in our paper dynamics of the model 

is introduced. We follow some elements of the model proposed by 

Angeletos, Hellwig and Pavan (2006). Their model offers rather general 

framework how to apply dynamic global games into a regime change 

mechanism. It can be applied for modeling speculation against a currency 

peg (which is of our priority interest), at the same time the model can be 

also used for some other purposes like explaining run against a bank or 

some other (not strictly economic) processes, for example a revolution 

against a dictator. There are two important features of the model. Firstly, it 

allows the agents to learn, therefore, the multiplicity is connected with 

information dynamics. And secondly, the fundamentals matter for the 

regime outcome prediction, although not for timing and number of attacks. 

However, the model presents only one side perspective, i.e. the speculator 



one, and the payoff function of Central Bank is not analysed. Moreover, we 

are not quite sure if it is fully satisfying to accept:  

 
“summarizing the private

 
information by the agent about

 
θ

 
at any 

given period in a one dimensional
 
sufficient

 
statistic, and capturing the 

dynamics of the cross-sectional distribution of the static in a parsimonious 

way 
(Angeletos, Hellwig and Pavan ,2006, p. 1-2)”,and then to apply this 

algorithm to examine the effects of learning on equlibria in the model. 

Instead, we offer well defined genetic algorithm to simulate learning 

process, and as we think that the Central Bank can also learn, in fact the 

genetic algorithm is used to show how decisions of two categories of agents 

are changing as far as their knowledge on the proportion of attacking 

speculators is concerned.  

In our model time is discrete and indexed by { }1, 2,t ∈ K . Agents are 

indexed by { }1, , , 1
t t

n N N∈ +K , where agents 1, , tNK  are speculators 

and agent 1tN +  is the Central Bank. Subscript t  is used, since we assume 

that number of speculators considering attack evaluates in time. Therefore 

there is a sequence{ } { }1,2,t t
N

∈ K
, which is not observed. The Central Bank 

receives ex post information about the number of speculators attacking 

denoted by α . We assume that each speculator considering attack, attacks 

with the same probability, therefore we have relationship: 

t t tNα κ= ,   1, 2,t = K                                                                                 

(1) 

where tκ  denotes probability that a chosen speculators attacks. α  is 

observed ex post, however N  and κ  are unobserved. Of course α  and κ  

evaluate in time too, therefore we have sequences { } { }1,2,t t
α

∈ K
 and 

{ } { }1,2,t t
κ

∈ K
. { } { }1,2,t t

er
∈ K

 is a sequence of observed exchange rates and 

{ } { }1,2,t t
θ

∈ K
 is a sequence of the true values of fundamentals. Similarly as in 

the model of Morris and Shin (1998) we assume that there are only 2 

possible states of exchange rate. Exchange rate is pegged at a level 
*

e  or 

depends on the fundamentals and is equal to ( )θf . An action set for the 

Central Bank is binary, which means that the Central Bank can defend the 

exchange-rate peg or abandon it. Since speculators can attack the exchange-

rate peg or refrain from doing so, their action set is binary too. We assume 

that 
*

1er e= . The game is continued until a state ( )t t
er f θ=  is reached or 

if after a finite number of periods dominant strategy is not to attack. 



According to the model of Angeletos, Hellwig, Pagan (2006) each player 

receives a private signal 
n n

t t t
x θ ε= + , where for 

t

Nn ,,1K=  

1
~ 0,

n

t

t

Nε
β

 
 
 

 is noise, independent identically distributed across agents. 

In the case of the Central Bank we assume that a noise 
1 1

~ 0,tN

t

t

Nε
β

+  
 
 

%
 

is independent of noises 
1
, , tN

t t
ε εK  and we assume that for all t  the 

inequality 
t t

β β>%  is valid because knowledge of the level of fundamentals 

is more precise in the case of the Central Bank than in the case of 

speculators. It is assumed in our paper that uncertainty concerning the level 

of fundamentals decreases and therefore 
s t

s t
β β

>
∀ > .  Morris and Shin 

(1998) and Angeletos, Hellwig, Pagan (2006) assumed that the level of 

fundamentals was random too, however in our model we consider different 

nonrandom trajectories of { } { }1,2,t t
θ

∈ K
.In our paper ( ), , , ,c ⋅ ⋅ ⋅ ⋅ ⋅  

denotes the 

Central Bank cost function. This cost depends similarly as in the paper of 

Morris and Shin (1998) the state of fundamentals θ . In our paper this 

function depends on the total number of speculators considering attack N  

and probability that a chosen speculator attacks κ . We assume that the 

total number of speculators considering attack evaluates according to the 

formula: 

( )1 1
t

N N t τ= + − .                1, 2,t = K                                                                        

(2) 

Our extension of the paper of Morris and Shin (1998) is to make cost of 

intervention dependent of the level of reserves r  too. We assume that 

( )1, , , ,c N rτ κ θ  is a continuous function and 
( )1

1

, , , ,
0

c N r

N

τ κ θ∂
>

∂
, 

( )1, , , ,
0

c N rτ κ θ

τ

∂
>

∂
,

( )1, , , ,
0

c N rτ κ θ

κ

∂
>

∂
, 

( )1, , , ,
0

c N rτ κ θ

θ

∂
<

∂
 and 

( )1, , , ,
0

c N r

r

τ κ θ∂
<

∂
. Total number of speculators in the beginning 

period is not known but it has to be predicted by each agent. Therefore for 

each n , 1

n
N  denotes predicted by the n -th agent total number of 

speculators considering attack on the foreign exchange market. Similarly τ  



and κ  is not known and has to be predicted by all agents. τ  is constant but 

predictions of this quantity change in time, therefore for each agent we 

have sequence { }
{ }1,2,

n

t
t

τ
∈ K

. Analogously we have a sequence { }
{ }1,2,

n

t
t

κ
∈ K

.  

Since our model is dynamic, we define time-dependent cost function 

( )1 1 1 1, , , ,
t t t t

c N rτ κ θ− − − , 2,3,t = K  Lagged variables are included, 

because action is done in period 1t −  and results of choice are observed in 

period t . Comparing to the paper of Morris and Shin (1998), one of 

extensions is based on the fact that the cost function is specified. We 

choose linear specification: 

( )( )1 1 1 2 1 3 12 , 2,3,
t t t t

c N t r tγ τ κ γ θ γ− − −= + − + + = K ,                                                      

(3) 

where 1 0γ > , 2 0γ < , 3 0γ <  are nonrandom and known constants. 

Similarly as in the model of Morris and Shin (1998), if the Central Bank 

defends the peg, it receives value v  but faces a cost c .  

  

3. Optimal strategies for the Central Bank and for speculators  

We suppose that all agents do action in the period 1−t  and the result of 

this action is observed in period t . Let { }
{ }1,2,

n

t
t

ST
∈ L

 denotes a sequence of 

strategies chosen by the −n th agent. ( )1

n n

t t
pay ST −  denotes the payoff in 

period t  for an agent number n , if this agent chooses action 1

n

t
ST −  in 

period 1−t . As we mentioned above { }0,1
n

t
ST ∈  for all n . In the case of 

speculators we suppose that 
n

t
ST  is 1 if speculator decides to attack 

currency and is 0 otherwise. If 
1

1tN

t
ST

+ = , the Central Bank decides to 

defend the exchange-rate peg and if 
1

0tN

t
ST

+ = , then the Central Bank 

abandons the exchange-rate peg. The following table shows payoffs for  

speculators in period t  in the period 1t −  exchange rate is pegged at the 

level 
*

e :    

 

 

 

 

Table 1. Payoffs for speculators in period t (
*

1t
er e− = ) 



1 1

1
tN

t
ST − +

−  

1

n

t
ST −  

0 1 

0
 

0 0 

1
 

( )( )*

t
e f trθ− −

 

tr−  

Source: Own calculations 

Central Bank’s payoff depends on the proportion of speculators 

attacking, state of fundamentals and the level of reserves. The payoff is 

defined in the following way: 

( )
( )( )

1

1

1

1

11 1

1 1

1 1 1 2 1 3 1 1

0 0,

2 1.

t

t t

t

N

tN N

t t N

t t t t

if ST
pay ST

v N t r if STγ τ κ γ θ γ

−

−

−

+

−+ +

− +

− − − −

 =
= 

− + − − − =
                 (4) 

Since neither the true proportion of speculators attacking nor state of 

fundamentals are known in the period of attack, expected payoff is 

calculated. This expected payoff is given by formula: 

( )
( )( )

1

1

1 1 1 1 1

1

11 1

1 1 1 1 1 1

1 1 1 1 2 1 3 1 1

0 0,

2 1.

t

t t

t t t t t

N

tN N

t t N N N N N

t t t t t

if ST
E pay ST

v N t x r if STγ τ κ γ γ

−

−

− − − − −

+

−+ +

− + + + + +

− − − − −

 =  =   − + − − − =

   (5)
 

Firstly we consider the border cases. We define a binary variable t
bad  

which is 1 if the state of fundamentals and reserves is extremely bad and 

even in the case of “no attack” the exchange-rate peg is abandoned and we 

define a binary variable t
good  which  is 1 if the state of fundamentals and 

reserves is extremely good. “Extremely good state of reserves and 

fundamentals” means that even in the case of all speculators attacking in 

period t , then ( )1 1

1 1 0tN

t
E pay + +

+
  >  . Value of variable t

bad  is defined 

below: 

( ){ }1 1

2 31 , : 0t tN N

t t t t tbad x r v x rγ γ+ += − − < .                                                                     

(6) 

Analogously variable tgood  is defined by the following formula: 

( ){ }1 1

1 2 31 , : 0t tN N

t t t t tgood x r v x rγ γ γ+ += − − − > .                                                             

(7) 



If a variable tbad  is 1, then a dominant strategy for the Central Bank is 

to abandon the exchange-rate peg. Otherwise if tgood  is 1, then a 

dominant strategy is to defend the exchange rate peg. There is no reason to 

attack for the speculators, if payoff from attacking (even if the attack is 

successful ) is smaller than a transaction cost, which means that: 

( )*

t
e f trθ− < .                                                                                                                         

(8) 

Then a dominant strategy for speculators is to refrain from attacking.   

If conditions (6) and (7) are not satisfied, then there exists such 1 1

1
tN

tκ − +

−
%  

that solves the following equation against 1 1

1
tN

tκ − +

− : 

( )( )1 1 1 11 1 1 1

1 1 1 1 2 1 3 12t t t tN N N N

t t t t
v N t x rγ τ κ γ γ− − − −+ + + +

− − − −= + − + + .                                                       

(9) 

Then an optimal strategy for the Central Bank is defined as follows: 

( )( )
1

1 1

1 1

1
1 1 2 1 3 1

1 1 1 1

1 1 1

1
2

t

t t

t t

N
N N t t

t t N N

t

v x r
ST

N t

γ γ
κ

γ τ

−

− −

− −

+
+ + − −

− − + +

−

 − − 
= < 

+ −  

.                                                           

(10) 

Similarly as in the case of the Central Bank, critical value 1

n

tκ −
%  is 

defined for each speculator. This value is calculated analogously changing 

an index 1 1tN − +  by n  for 11, , tn N −= K .Speculators do not have any 

information on a state of fundamentals observed by the Central Bank and 

predicted by the Central Bank values of parameters 1N  and predicted by 

the Central Bank probability of attacking by a chosen speculator κ . 

Therefore they have to rely on their own observations and predictions to 

formulate the payoff function of the Central Bank. There is a reason to 

attack for the speculators if the predicted probability of attacking exceeds 

the critical value. Therefore if inequality (8) is not satisfied, then an optimal 

strategy for speculators is given by the following formula: 

( )( )
2 1 3 1

1 1

1 1 1

1
2

n

n n t t
t t n n

t

v x r
ST

N t

γ γ
κ

γ τ
− −

− −

−

 − − 
= > 

+ −  

.                                                                                   

(11) 

As we have already mentioned, parameters of the cost function of the 

Central Bank are known only to the CB but unknown to the speculators. 

   



4. Genetic algorithm in the process of learning  

In the first period for each n  predicted total number of speculator 

considering attack is equal to N . Similarly, predictions of τ  and κ  are 

purely random for each agent. In the second period Central Bank knows 

value of 1 1 1Nα κ= . The Central Bank assumes that probability of attacking 

by individual speculator in a given period is the same as this probability in 

previous period and therefore predicts values of κ  and τ  in the next 

periods using the following recursive formula: 

1

1 1
1

1

t t

t

N N

N t t
t

t

Nκ
κ

α
+

+ +
+

+ = .                                                                                                                

(12) 

Parameter τ  is predicted according to the following formula: 

1

1

1

1 1

1 1

1
1

t

t

t

N N

N t

t
t

α α

κ κ
τ +

+ +

+

+

 
− 

 =
−

.                                                                                                        

(13) 

Since forex market is not fully transparent, we assume that speculators 

do not have any information concerning number of speculators attacking in 

the previous period. But they observe their own payoffs and if payoff for 

the first speculator is higher than payoff for the second one, then this first 

speculator has higher chance to “survive” than the second one. It is obvious 

that speculators with higher payoffs are satisfied with their decisions and 

they do not have any incentive to change the tactic. Speculators with 

negative payoffs decide to change their tactic. They learn tactic from the 

speculators with positive payoffs. New speculators enter the FX market. 

Dynamics on the FX market imitates nature, where only correctly fitted 

spiches survive. Spiches that are not able to adapt to the environment are 

replaced by the spiches that are better fitted. Crossover can be interpreted 

as a knowledge exchange. Considering all this FX market can be modeled 

as evolving system of the autonomous interacting agents and hence the 

genetic algorithm can be applied here. Analyzing formula for optimal 

strategy of −n th speculator in period t , we can notice that this strategy 

depends on parameters 1

n

tκ − , 1γ , 2γ , 3γ , 1

n

tτ − , 1

n
N . Speculators do not 

know these parameters and their knowledge concerning them is changing 

from first period to the second one. We assume that these parameters are 

different for different periods and different speculators. We denote 
n

itγ  as 

predicted value of parameter iγ , 3,2,1=i  in period t  by −n th speculator. 



In order to use genetic algorithm we have to define range of possible values 

of parameters. It is obvious that:     

{ }
( ]1

2,3,
0,1n

t
t n

κ −
∈

∀ ∀ ∈
K

.                                                                                                               

(14) 

We have to choose minimum and maximum values of parameters 

1 2 3 1, , , , Nγ γ γ τ , after choosing these values, we have: 

min max

1 1 1
,

,n

t
t n

γ γ γ∀ ∈ ,
min max

2 2 2
,

,n

t
t n

γ γ γ∀ ∈ ,
min max

3 3 3
,

,n

t
t n

γ γ γ∀ ∈ ,

min max

,
,n

t
t n

τ τ τ∀ ∈ , 
min max

1 1 1
,

,n

t n
N N N∀ ∈ . If we choose precision ε , 

then number of gens in one chromosome is equal to: 

( ) ( ) ( )max min max min max min
3

1 1

2 2 2 2

1

1
log log log log

1

i i

i

N N
GENS

γ γ τ τ

ε ε ε=

 − − − 
 = + + + +     

∑

 

( ) ( )max min max min
3

2 2 2

1

1
6 1 log 1 log 1 log

1

i i

i

Z Z Z
γ γ τ τ

ε ε=

   − −    
+ − ∈ − ∈ − ∈ +     

        
∑

                  (15) 

( )max min

1 1

21 log
1

N N
Z

 − 
− ∈ 
  

, 

where [ ]x  denotes integer value of x . First 2 2

1 1
log 1 1 log Z

ε ε

   
+ − ∈     

 

gens represent strategy concerning the expected probability of attacking by 

a chosen speculator, next 

( ) ( )max min max min

1 1 1 1

2 2log 1 1 log Z
γ γ γ γ

ε ε

   − − 
  + − ∈ 
      

 
gens represent 

strategy concerning the value of parameter 1γ  etc. In order to introduce 

crossover and mutation we define quantities 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1, , , , ,pc pc pc pc pc pc Nκ γ γ γ τ , which denote 

probabilities of crossover for gens of two chromosomes for a given 

parameter. ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1, , , , ,pm pm pm pm pm pm Nκ γ γ γ τ  denote 

probability of mutation of respective gens and 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1, , , , ,pr pr pr pr pr pr Nκ γ γ γ τ  denote proportion of 



gens in appropriate part of chromosome, which are crossed over. Before we 

calculate fitness function, for simplicity we define the following variables: 

( ){ }*
1 0

n n

t t tSS e f trθ ε= − + − > ,     1, , tn N= K ,   K,2,1=t , 

( )( ) ( ){ }1 1 1

1 1 2 31 1 0t t tN N N

t t t t t tSB v N t rγ κ τ γ θ ε γ+ + += − + − − + − > ,     

K,2,1=t ,                    (16) 

( )( ) ( ){ }1 1 2 31 1 0
n n n n n n n n

t t t t t tSBS v N t rγ κ τ γ θ ε γ= − + − − + − > ,         

1, , tn N= K . 

If 1
n

tSS = , then attack is considered by the −n th speculator in period 

t . Otherwise transaction costs exceed payoff and attack is not taken into 

account. Value of variable tSB  informs us about the strategy of the Central 

Bank. Central Bank abandons the exchange-rate peg if  0tSB =  and 

defends it otherwise. Variable 
n

tSBS  can be interpreted as expected (by the 

−n th speculator) strategy of the Central Bank. 
n

tSBS  is 1 if the −n th 

speculator predicts that the Central Bank will defend the exchange-rate peg 

and 0 otherwise. Since payoff may be negative, we do monotonic 

transformation in order to calculate the value of the fitness function: 

( )1expn n

t t
F pay += .                                                                                                                  

(17) 

 

 

The fitness function in our model is given by the following formula: 

( )

( )

( )( )*

exp 1 0,

exp 0 1 0,

exp 1 0.

n n

t t t

n n n

t t t

n n

t t t t

tr if SS SB SBS

F if SS SBS

e f tr if SS SBS SBθ

 − = ∧ =




= = =


 − − = ∧ =

                                     

(18) 

We use roulette-wheel selection method in order to choose appropriate 

chromosomes in the next period.      

In the first simulation experiment probability of abandoning the 

exchange-rate peg is calculated. If after 20 periods the Central Bank does 

not change its strategy and still defends exchange-rate peg or dominant 



strategy for speculators is not to attack, then we assume that the exchange-

rate peg is abandoned. Experiment is done for different states of 

fundamentals (weak fundamentals, medium fundamentals, strong 

fundamentals), different levels of reserves (low reserves, medium reserves, 

high reserves) and different values of parameter τ  . We assume that 
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=τ  and 7
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=τ .
In our experiment predicted 

numbers of speculators in the first period are randomly selected in the 

following way:
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1

nκ  is selected randomly from ( )0,1U  for all agents. Similarly 
nτ  is 

selected randomly for all agents in the first period. We assume that if 2=τ
, then 
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n
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1
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If 5=τ , then: 
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In the case of the Central Bank, values of parameter τ  in periods 

2,3,t = K  are obtained according to the formula (13) and values of 

parameter κ  are obtained according to the formula (12). In the case of 

speculators, values of parameters τ  and κ  in periods 2,3,t = Kresult 

from the use of genetic algorithm. Speculators with higher payoffs have 

higher chances not to change their strategy. Speculators with negative 

payoffs have higher chances to use a different strategy in the next period. 

Constant parameters are as follows: 

2
*

=e , 3=v ,   1 0,8γ = , 2 0,7γ = − , 3 0,8γ = − ,  
min

1 0γ = ,  
max

1 2γ = ,  

min

2 2γ = − ,  
max

2 0γ = ,  
min

3 2γ = − , 
max

3 0γ = , 5
t

tβ = , 10
t

tβ =% ,  

( )t t
f θ θ= , 35,0=tr . 

In the case of weak fundamentals, t
θ  is given by the following formula: 

1,2 0,01
t

tθ = + , 

in the case of medium fundamentals we have: 

1,4 0,01
t

tθ = + , 

in the case of strong fundamentals t
θ  is given by formula: 

1,6 0,01
t

tθ = + , 

whereas in the case of very strong fundamentals we have: 

1,7 0,01
t

tθ = +   

In the case of low reserves, t
r  is given by the following formula: 

1 0,01
t

r t= + , 

in the case of medium reserves we have: 

3 0,01
t

r t= +  

and in the case of high reserves we have: 

5 0,01
t

r t= + . 

τ  takes on values 2 and 5.  

     



We conducted 10 000 replications and calculated probability of 

abandoning the exchange-rate peg. We received the following results: 

 
Table 2a. Probability of Defending the Exchange-Rate Peg if number of 

speculators increases slowly 

2τ =  

Fundamentals 

Reserves 

Weak Medium Strong Very 

strong 

Low 0,0770 0,1006 0,2807  

Medium 0,2826 0,3214 0,5763 0,8281 

High 0,5479 0,5735 0,8291 0,9832 

 Source: Own calculations 

 

Table 2b. Probability of Defending the Exchange-Rate Peg if number of 

speculators increases fast 

5τ =  

Fundamentals 

Reserves 

Weak Medium Strong Very 

strong 

Low 0,0063 0,0120 0,0915 0,5573 

Medium 0,0437 0,0679  0,8092 

High 0,1367 0,1779  0,9827 

 Source: Own calculations 

According to the results from the tables 2a and 2b, probability of 

defending the exchange-rate peg increases if state of fundamentals 

improves. The same relation concerns level of reserves. If the Central Bank 

keeps high level of reserves then the probability of abandoning the 

exchange-rate peg is higher than in the case of medium and weak reserves. 

Comparing values in the table 2a to the corresponding values in the table 

2b, we can notice that probability of defending the exchange-rate peg is 

higher when number of speculators increases slower. It means that with the 

intensification of globalization and financial markets liberalization process, 

the Central Bank has lower chances to defend the exchange-rate peg.       



In the second simulation experiment mean payoff for speculators is 

calculated. The same parameters are used as in the first experiment and the 

same variants are considered. Experiment is based on 10 000 replications. 

The results are as follows: 
 

Table 3a. Mean payoff for speculators if number of speculators increases slowly 

2τ =  

Fundamentals 

Reserves 

Weak Medium Strong Very 

strong 

Low 0,28 -0,96 -1,72  

Medium -1,35 -2,25 -2,24 -0,56 

High -2,23 -2,89 -2,25 -0,46 

 Source: Own calculations 

 

Table 3b. Mean payoff for speculators if number of speculators increases fast 

5τ =  

Fundamentals 

Reserves 

Weak Medium Strong Very 

strong 

Low 1,56 0,02 -1,58 -0,84 

Medium 0,56 -1,15  -0,78 

High -0,39 -2,31  -0,63 

 Source: Own calculations 

According to the tables 3a and 3b, speculators reach positive payoffs for 

weak fundamentals and low reserves. For increasing level of reserves and 

for better fundamentals, mean payoff for speculators decreases, but this 

relation is non-linear. It can be seen that in the case of very strong 

fundamentals mean payoff for speculators is higher than in the case of 

strong or sometimes even medium fundamentals. This phenomenon results 

from the fact that if fundamentals are very strong then speculators know 

that probability of inefficient attack is higher. Therefore lower number of 

speculators decides to attack and even if they attack, they change tactic 

after first period of inefficient attack. Comparing values in the table 3a to 



the corresponding values in the table 3b, we notice that if number of 

speculators increases faster, then mean payoff for speculators is higher.   

In the third simulation experiment average time of collapse the 

exchange-rate peg is calculated. Though we assume that if the exchange-

rate peg survives 20 periods, game is over, we put value 20 if the exchange-

rate peg is defended. The same parameters are used as in the first 

experiment and the same variants are considered. Experiment is based on 

10 000 replications. The results are as follows: 

 
 

Table 4a. Mean time of duration of the exchange rate-peg, when number of 

speculators increases slowly 

2τ =  

Fundamentals 

Reserves 

Weak Medium Strong Very 

strong 

Low 3,80  4,40 7,39  

Medium 8,54 9,19 12,90 16,73 

High 13,59 13,98 17,40 19,68 

 Source: Own calculations 

 

Table 4b. Mean time of duration of the exchange rate-peg,  when number of 

speculators increases fast 

5τ =  

Fundamentals 

Reserves 

Weak Medium Strong Very 

strong 

Low 2,01 2,25 4,04  

Medium 3,80 4,32  16,41 

High 6,60 4,59  19,67 

 Source: Own calculations 

Comparing results in the tables 4a and 4b, we can notice positive 

relation between the state of fundamentals and duration of the exchange-

rate peg and positive relation between the level of reserves and duration of 



the exchange-rate peg. If the fundamentals are weak and the level of 

reserves is low, exchange-rate peg collapses very fast. If fundamentals are 

very strong and the level of reserves is high, then the mean duration of the 

exchange-rate peg is close to 20 periods, which means that in most situation 

exchange-rate peg is defended. This result agrees with the result from the 

first Monte Carlo experiment. Comparing values in the table 4a to the 

corresponding values in the table 4b, we can notice that average duration of 

the exchange-rate peg is higher in the case of slower pace of increasing of 

number of speculators. 

   

Conclusions 

1.  The model seems to catch reality in more complex way:  level of noise 

changes in time (decreasing), there are different states of fundamentals 

(with “more sensitive” upper part of the scale), number of inflowing agents 

can be low or high (due to different globalization phases, different capital 

flow phases, different uncertainty levels).  

2.  Dynamic nature of the model is also reflected in defining some kind of 

continuity of CB and agent behavior. Both sides must formulate their 

strategies in continuous way, and therefore simultaneously, which is a shift 

from a single-action approach (single nonreplicable attack, located in the 

short run and therefore sequential decision making process) to a longer 

perspective. 

3.  In fact, the results are in line with intuition, which may confirm that the 

usage of genetic algorithm was a right decision. Weaker level of 

fundamentals decreases probability of defending the exchange rate peg and 

increases pay-off for speculators.  If dynamics of inflow of agents is higher, 

then probability of defending peg is lower, pay-off for speculators is higher 

and mean time of peg maintenance duration is lower.  The higher the level 

of international reserves the higher probability of peg defending, the lower 

pay-off for speculators and the higher duration of peg maintenance. 
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